skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McEwen, Eden"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 2MASS J16120668–3010270 (hereafter 2MJ1612) is a young M0 star that hosts a protoplanetary disk in the Upper Scorpius star-forming region. Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations of 2MJ1612 show a mildly inclined disk (i = 37°) with a large dust-depleted gap (Rcav ≈ 0 . 4 or 53 au). We present high-contrast Hαobservations from MagAO-X on the 6.5 m Magellan telescope and new high-resolution submillimeter dust continuum observations with ALMA of 2MJ1612. On both 2025 April 13 and 16, we recovered a point source with Hαexcess with a signal-to-noise ratio ≳5 within the disk gap in our MagAO-X angular and spectral differential images at a separation of 141.96 ± 2.10 mas (23.45 ± 0.29 au deprojected) from the star and a position angle ​​​​​of 159 . ° 00 ± 0 . ° 55. Furthermore, this Hαsource is within close proximity to aK-band point source in the SPHERE/IRDIS observation taken on 2023 July 21. The astrometric offset between theKband and Hαsource can be explained by orbital motion of a bound companion. Thus, our observations can be best explained by the discovery of an accreting protoplanet, 2MJ1612 b, with an estimated mass of 4MJupand a Hαline flux ranging from (29.7 ± 7.5) × 10−16erg s cm2to (8.2 ± 3.4) × 10−16erg s cm2. 2MJ1612 b is likely the third example of an accreting Hαprotoplanet responsible for carving the gap in its host disk, joining PDS 70 b and c. Further study is necessary to confirm and characterize this protoplanet candidate and to identify any additional protoplanets that may also play a role in shaping the gap. 
    more » « less
    Free, publicly-accessible full text available September 10, 2026
  2. Abstract We present 3 yr of high-contrast imaging of the PDS 70 b and c accreting protoplanets with the new extreme AO system MagAO-X as part of the MaxProtoPlanetS survey of Hαprotoplanets. In 2023 and 2024, our sharp (25–27 mas FWHM), well-AO-corrected (20%–26% Strehl), deep (2–3.6 hr) images detected compact (r∼ 30 mas;r∼ 3 au) circumplanetary disks (CPDs) surrounding both protoplanets. Starlight scattering off the front edge of these dusty CPDs is the likely source of the bright compact continuum light detected within ∼30 mas of both planets in our simultaneously obtained continuum 668 nm filter images. After subtraction of contaminating continuum and point-spread function residuals withpyKLIPangular differential imaging and spectral differential imaging, we obtained high-contrast ASDI Hαimages of both planets in 2022, 2023, and 2024. We find the Hαline flux of planet b fell by (8.1 ± 1.6) × 10−16erg s−1cm−2, a factor of 4.6 drop in flux from 2022 to 2023. In 2024 March, planet b continued to be faint with just a slight 1.6× rise to an Hαline flux of (3.64 ± 0.87) × 10−16erg s−1cm−2. For c, we measure a significant increase of (2.74 ± 0.51) × 10−16erg s−1cm−2from 2023 to 2024, which is a factor of 2.3 increase. So both protoplanets have recently experienced significant Hαvariability with ∼1 yr sampling. In 2024, planet c is brighter than b: as c is brightening and b generally fading. We also tentatively detect one new point source “CC3” inside the inner disk (∼49 mas; at PA ∼ 295°; 2024) with orbital motion roughly consistent with a ∼5.6 au orbit. 
    more » « less
  3. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    Adaptive Optics (AO) used in ground based observatories can be strengthened in both design and algorithms by a more detailed understanding of the atmosphere they seek to correct. Nowhere is this more true than on Maunakea, where a clearer profile of the atmosphere informs AO system development from the small separations of Extreme AO (ExAO) to the wide field Ground Layer AO (GLAO). Employing telemetry obtained from the ımaka GLAO demonstrator on the University of Hawaii 2.2-meter telescope, we apply a wind profiling method that identifies turbulent layer velocities through spatial-temporal cross correlations of multiple wavefront sensors (WFSs). We compare the derived layer velocities with nearby wind anemometer data and meteorological model predictions of the upper wind speeds and discuss similarities and differences. The strengths and limitations of this profiling method are evaluated through successful recovery of injected, simulated layers into real telemetry. We detail the profilers’ results, including the percentage of data with viable estimates, on four characteristic ımaka observing runs on open loop telemetry throughout both winter and summer targets. We report on how similar layers are to external measures, the confidence of these results, and the potential for future use of this technique on other multi conjugate AO systems. 
    more » « less